一、模糊与神经网络技术在电力传动系统中的运用(论文文献综述)
李鑫[1](2021)在《铁路机车设备画像理论及关键技术研究》文中研究指明铁路机务专业是铁路运输系统的重要行车专业,主要负责各型机车的运用组织、整备保养和综合检修。作为重要的铁路运输生产设备,机车的运输生产效率、设备质量状态、整备检修能力、安全管理水平等均会对铁路运输生产能力的稳健提升和经营管理工作的稳步发展产生重要影响。随着各种监测检测设备以及各类信息管理系统的广泛应用,围绕机车积累了形式多样的海量数据,数据增量及质量均大幅提升,数据价值日益体现,铁路行业对于完善机车健康管理的需求十分迫切。当前铁路机务专业在进行机车健康管理的过程中,存在分析方法较少、大数据挖掘不足、管理决策科学性较弱、综合分析平台缺失等问题。铁路机车设备画像理论及关键技术研究作为实现机车健康管理的重要手段,致力于加强机车数据资源的整合利用,通过客观、形象、科学的标签体系全面而精准地刻画机车的质量安全状态,并以此为基础深入挖掘潜藏的数据价值,实现机车事故故障关联分析、安全状态预警盯控、质量安全态势预测、检修养护差异化施修、稳健可靠管理决策等目的,支撑起铁路运输生产及质量安全管理工作的科学化、数字化、智能化发展。本文主要对铁路机车设备画像理论及其一系列关键技术进行了研究与应用,取得了以下创新成果:(1)提出了铁路机车设备画像理论。通过梳理机车设备画像的含义及研究意义,明确了构建铁路机车设备画像理论的必要性及其定位。基于此,给出铁路机车设备画像理论的定义与内涵,梳理了符合现阶段机车运输生产管理需要的铁路机车设备画像理论的构成,阐述了关键技术的研究方法及之间的逻辑关系。同时,设计相匹配的应用架构,介绍了其所包含的核心应用、赋能应用、总体目标等6个方面内容。这为系统性地开展机车健康管理相关研究提供了崭新的理论和方法支持。(2)构建了基于设备画像的铁路机车画像标签体系。通过整合利用机车多维度数据,提出了机车设备画像3级标签体系技术架构,全面分析所包含的数据采集层、标签库层和标签应用层,详细阐释各级标签的内容构成,形成机车画像标签体系的构建方法。针对聚类这一标签产生方式,改进K均值(K-means)聚类算法的初始质心选取方法,提高标签获取的精度和稳定性。通过在某铁路局开展机车设备画像实地应用研究,获得了客观、精准、完整、可靠的机车画像。(3)提出了基于Ms Eclat算法的铁路机车事故故障多最小支持度关联规则挖掘方法。针对机车事故故障在关联规则挖掘中具有不同支持度的特点,提出了改进的等价变换类(Eclat)算法——多最小支持度等价变换类(Ms Eclat)算法,以各项目的支持度值为排序依据重新构建数据集,进而运用垂直挖掘思想获得频繁项集;为了进一步提高Ms Eclat算法在大数据分析场景中的执行效率,将布尔矩阵和并行计算编程模型Map Reduce应用于算法的计算过程,得到优化的Ms Eclat算法,设计并阐述了相应的频繁项集挖掘步骤。通过比较,Ms Eclat算法及其优化算法在多最小支持度关联规则挖掘方面有着极大的计算效率优势。通过在某铁路局开展实际应用研究,验证了算法的有效性、高效性和准确性。(4)设计了基于时变概率的PSO+DE混合优化BP神经网络的机车质量安全态势预测模型。通过总结反向传播(BP)神经网络、粒子群优化(PSO)算法和差分进化(DE)算法的原理及优缺点,设计了基于时变概率且融入了防早熟机制的PSO+DE混合优化BP神经网络预测模型,详细阐释了这一预测模型的训练步骤。以某铁路局的机车质量评价办法为依托,选用灰色关联度分析方法选择出运用故障件数、碎修件数等7个评价项点,预测机车未来3个月的质量安全态势。经过实验对比,新提出的预测模型有着更好的收敛能力,对于机车质量评价等级预测及分值变化趋势预测的准确度分别可以达到98%和91%以上。最后开展了实际预测应用及分析,为科学把控机车质量安全态势提供了较好的技术方法。(5)设计了基于铁路机车设备画像理论的铁路机车健康管理应用。通过总结梳理铁路机车健康管理应用与铁路机车设备画像理论及机务大数据三者间的关系,设计了基于铁路机车设备画像理论的铁路机车健康管理应用的“N+1+3”总体架构及其技术架构。基于此,从设备、人员和综合管理3个方面介绍了机车运用组织、机车整备检修、辅助决策分析等7个典型应用场景,并特别给出这些场景的数据挖掘分析思路及框架,为铁路机车设备画像理论的扎实应用奠定了重要基础。最后,将本文所取得的相关研究成果在某铁路局开展实地的铁路机车健康管理应用实践,通过搭建人机友好的应用系统,完成一系列机务大数据挖掘分析算法模型的封装,实现了机车画像标签生成及设备画像分析、机车事故故障关联分析、机车质量评价分析、机车质量安全态势预测分析等多项功能。通过实际的工程应用,实现了铁路机车设备画像理论及其关键技术的创新实践,取得了良好的效果。全文共有图56幅,表21个,参考文献267篇。
任相[2](2021)在《电传动内燃机车励磁控制系统的研究》文中认为如今随着电力机车的发展,内燃机车已经濒临淘汰的边缘,但是由于自备能源的特点,使其在铁路运输中存在一定价值,目前,运行的内燃机车数量为六千余量。电传动系统性能优劣直接影响内燃机车安全平稳的运行,内燃机车电传动系统包括主发励磁控制和辅发励磁控制两部分。本课题所研究的DF4和DF7型内燃机车生产于上世纪六十年代,现在主要用于调车机车和小运转机车,受限于当时电力电子技术水平,导致机车故障率高,不能满足人们要求,而如今电力电子技术发展迅速,因此采用先进电力电子技术对内燃机车励磁控制系统进行改进很有必要,使机车运行更加平稳和安全。本课题主要对内燃机车柴油发电机组和辅发励磁蓄电池充电电路进行研究。论文主要研究内容如下:(1)内燃机车作为铁路运输牵引动力来源,因此需要对内燃机车牵引特性进行分析,同时分析内燃机车能量流动和采用柴油机直驱的内燃机车牵引特性,引出直驱内燃机车牵引特性不满足内燃机车牵引特性,因此内燃机车必须采用传动装置。本课题研究对象是DF4和DF7系列内燃机车所采用的电力传动装置为交-直流传动,然后对电力传动结构采用的型号和参数进行介绍。最后建立内燃机车电机的数学模型,为后面励磁控制系统的研究提供基础。(2)针对电传动内燃机车在负载发生扰动下,转速会发生波动,致使柴油机功率与牵引发电机功率不匹配,导致机车运行不平稳。本文提出BP神经网络预测进行内燃机车转速控制,并对内燃机车调速系统进行数学建模,以及对目前内燃机车调速系统所采用的控制算法进行分析。最后对BP神经网络预测的内燃机车转速控制系统搭建仿真模型并进行仿真实验,同时对目前所采用的经典算法进行实验对比,结果证明,基于BP神经网络预测控制的内燃机机车调速系统控制性能好,同时针对负载突变时响应快、超调量小和调整时间短。(3)完成内燃机车调速系统设计和改进后,需要对内燃机车励磁调节器进行设计。首先对恒功率励磁原理进行分析,然后根据其工作原理提出恒功率励磁控制策略,并对励磁调节系统进行数学建模。针对内燃机车是一个复杂的、非线性系统,设计出基于模糊自适应PID的励磁调节器,同时搭建内燃机车恒功率励磁控制系统仿真模型进行仿真实验,实验结果表明,本课题提出的模糊自适应PID励磁调节器对内燃机车恒功率励磁系统有较好的控制性能,同时使主发电机的输出端电压更加稳定。(4)针对内燃机车在辅发蓄电池充电中,蓄电池电量耗尽时进行充电导致充电电流过大现象,对内燃机车辅发励磁充电电路原理进行分析。结合Buck电路的特点设计出带Buck缓冲的辅助发电机励磁充电电路,并对控制算法改进为电压电流双环PI控制。通过对带Buck缓冲的辅助发电机励磁充电电路模型进行理论分析以及仿真实验,结果证明,带Buck缓冲的辅助发电机励磁充电电路可以将蓄电池充电电流控制在安全范围内。
黄红兵[3](2020)在《塑料挤出机温度控制系统研究与设计》文中研究说明塑料型材作为现代社会经济发展的一种基础性材料,其成型过程大多由塑料挤出机加工完成。在塑料型材生产过程中,挤出机温度控制精度对原料的塑化和混合效果有着直接而明显的影响。因此,研制一种高精度、快速响应的挤出机料筒温度控制系统对塑料机械行业具有重要的意义。本课题来源于大连某塑料建材有限公司--高效塑料型材生产工艺及专用设备研究项目。该项目以塑料挤出机料筒温度控制系统为核心研究内容,在分析系统各项性能指标的基础上,重点对挤出机温度控制算法进行研究。同时对控制系统硬件、软件进行设计,最终目标实现控制算法在挤出机上的应用,提高料筒温度的控制精度和系统稳定性。首先分析了塑料挤出机工艺流程和工作原理,设计了挤出机温度控制系统总体方案。采用阶跃响应曲线辨识法获取系统模型参数,建立料筒温度控制系统数学模型。利用MATLAB/Simulink对常规PID控制方法与模糊PID控制策略进行仿真,针对常规PID控制参数难以整定、超调量过大、调节时间长,模糊PID控制抗干扰能力差等问题。本文采用BP神经网络与传统PID相结合的控制策略,设计搭建3-5-3结构的BP神经网络PID控制器,提出引入惯性项、引入动量项、改进学习速率策略,实现对PID的比例、积分和微分三个参数的调节功能。在MATLAB/Simulink环境下搭建新型料筒温度控制系统仿真模型,进行系统仿真实验分析,仿真结果表明基于BP神经网络的PID控制器具有较好的温度控制效果及抗干扰能力。然后对挤出机温度控制系统进行硬件和软件设计。硬件部分详细分析PLC及扩展模块的总体配置并进行硬件组态,对控制系统温度传感器、料筒加热器、冷却装置等主要设备选型和电路设计;软件部分介绍了本控制系统的程序结构,运用STEP7编程软件对温度控制系统的主程序进行编写及BP-PID控制算法的实现。同时根据设计原则及用户要求,开发挤出机温度控制系统Win CC监控界面,实现人机交互和整个控制系统的在线监控,并完成实时温度参数的设定、修改、系统数据的存储、历史数据的显示、报警信息显示和查询等功能。最后,对所设计的挤出机温度控制系统进行了系统测试与性能评价。实验数据验证了本文控制方案设计的合理性,提高了料筒温度控制精度,具有较好的自适应能力和稳定性。
赵洪河[4](2019)在《电气传动系统的智能控制问题》文中研究表明本文对智能控制系统的兴起和特点进行探讨,研究了智能控制系统的主要控制方式以及智能控制系统的构成,分析了智能控制器在电气传动系统的应用和未来发展,有效的控制电力传动系统,使控制更加高速和准确。
刘娜,董志冉[5](2019)在《电力传动系统模糊与神经网络技术的运用》文中认为电力传动系统的主要作用是将电能转换成机械能,将模糊和神经网络技术应用其中,实现自动能量转换,以及相关信息和数据的控制和处理,提升电力传动系统性能。
曹斌[6](2019)在《基于模糊神经网络和D-S证据理论的三电平四象限变频器主电路健康诊断策略》文中指出随着可控功率电子器件及相关技术的蓬勃发展,各种拓扑结构的大功率多级变频调速系统在工业中的应用越来越广泛,降低了单位能耗,取得了显着的节能效果。变频器是一个十分繁杂的电子系统,其中功率开关管的开路故障是变频器中出现概率最高的故障,本文利用多传感器信息融合技术的优势,对变频器的功率管的开路故障进行诊断,破除单一传感器的局限性,提高故障诊断的准确性和精度。本文以ABB公司的ACS6000变频器为研究对象,该变频器为三电平四象限变频器,将变频器主电路分为整流电路、直流电路及逆变电路三个部分,对这三部分电路详细分析了基本工作原理及各部分功率管开路故障时的各种输出波形,从输出波形中提取出故障特征。对三部分电路分别建立三个子模糊神经网络,先对各部分电路进行故障诊断,也是对变频器健康状态初步的局部诊断。D-S证据理论具有较好的处理不确定信息的能力。针对故障诊断中的不确定性,采用D-S证据理论将整流电路、直流电路、逆变电路的三个子模糊神经网络的诊断结果进行融合,得到整个变频器的健康状况。但是由于D-S证据理论对于强冲突数据的融合效果不理想,本文利用基于相似系数的D-S证据理论对强冲突数据进行融合,取得了较好的效果。故障特征信号与输出信号具有非线性,模糊神经网络具有良好的非线性自适应能力,并且易于构造基本概率函数;而D-S证据理论构建基本概率函数比较困难,具有很大的主观性,但决策比较准确。模糊神经网络与D-S证据理论具有优势互补的特点,本文将这两种诊断方法结合在一起,建立了基于模糊神经网络和D-S证据理论的变频器主电路健康诊断框架,使用三个子模糊神经网络对变频器进行局部诊断,再通过D-S证据理论进行全局融合,得到整个变频的健康状况。最后通过实例验证了综合诊断的方法比单独使用一种诊断的方法具有更高的准确性。
史林然[7](2019)在《基于状态空间模型的开关磁阻电机预测电流控制》文中研究说明开关磁阻电机(Switched Reluctance Motor,SRM)因其结构简单、生产成本低、起动转矩大、可靠性高、再生制动能力强等优点,在电动车中得到了广泛关注。然而双凸极结构特点导致了电机存在瞬时转矩脉动,换相过程转矩脉动尤甚。由于对转矩脉动的抑制在很大程度上取决于对电机电流的控制精度,本文利用模型预测控制优良的“滚动优化”能力,设计基于模型预测控制的开关磁阻电机调速系统电流环控制器,以提高电机电流跟踪能力,从而有效减小电机转矩脉动。本文首先对传统的有限控制集预测电流控制进行了介绍,针对传统的有限控制集预测电流控制存在的计算量大等问题,提出了一种改进的有限控制集预测电流控制方法,在保证控制性能不受影响的前提下有效降低了计算负担。仿真研究表明相较于滞环电流控制,改进的有限控制集预测电流控制提高了电流跟踪能力,但电流和转矩脉动抑制效果不够理想,同时还存在开关频率不固定的问题。针对改进的有限控制集预测电流控制仿真研究中电流脉动大、开关频率不固定等不足,提出了一种基于连续控制集的预测电流控制方法,选取电流跟踪误差和控制量构成目标函数,求解该优化目标直接计算得到实际电流跟踪上参考电流所需的精确占空比,并将该占空比用于开关磁阻电机调速系统电流环控制中,实现对电流、转矩脉动的控制。本文还提出了一种简化的非线性相电感模型,利用实测电机增量电感数据获取模型预测电流控制中所需的相电感,该法提高了相电感模型的精度,无需电机磁链数据。MATLAB/SIMULINK仿真结果表明,基于连续控制集的模型预测电流控制方法能够实现实际电流对参考电流的精确跟踪,具有较好的转矩脉动抑制效果。最后,以一台电动车用1.5kW三相12/8SRM为实验对象,搭建基于DSP的SRM调速系统实验平台,验证了本文所提基于连续控制集的SRM预测电流控制方法的可行性和有效性。
张宇[8](2019)在《基于旋转激励作动器的结构振动主动控制》文中指出在土木工程结构中恰当地安装主动质量阻尼器(Active Mass Damper,AMD)能有效抑制外载荷激励下的结构振动响应,减轻结构构件的破坏与损伤,在保证结构安全性的同时,降低结构建造成本。目前,AMD系统中的作动器主要包括液压作动器和伺服电机作动器(需机械传力装置),这两种作动器均存在一些难以克服的缺点,限制了AMD的广泛应用。受欠驱动机械系统领域中基于旋转激励的平移振荡器的启发,通过将“旋转激励”的概念引入到结构振动主动控制中来,提出了新型的旋转激励作动器,基于此,设计了一种新型的基于旋转激励作动器的AMD装置(Active Mass Damper with Rotating Actuator,R-AMD)。不同于传统直线AMD,R-AMD采用电力传动系统(旋转伺服电机)直接驱动惯性质量做旋转运动,能够克服传统AMD作动器存在的构造复杂、需机械传力部件传力、响应慢、行程受限等问题。为分析R-AMD装置对结构振动控制的有效性,将单自由度结构作为被控对象,考虑控制-结构的相互作用,建立了R-AMD/单自由度结构耦合系统数学模型,并给出了R-AMD装置两种不同的控制模式,即旋转控制模式与摆动控制模式。采用最大反馈线性化方法,通过计算并选取相对阶为三的虚拟输出函数,可将R-AMD/单自由度结构耦合系统数学模型转化为带有稳定内动态的三阶线性系统;同时,给出了基于最大反馈线性化的线性控制方案给系统参数带来的约束条件。针对线性控制方案中系统参数受限问题,为提高R-AMD控制系统的动态响应性能,采用θ-D逼近方法,实现了R-AMD控制系统的非线性最优控制器设计;其中,阐明了基于微分同胚坐标变换能有效解决“θ-D逼近方法对于欠驱动控制系统的适用性”的问题。考虑到土木工程结构在使用过程中存在参数不确定性(如设备安装、装修等因素影响结构质量、刚度),且会受到风、地震等外部载荷的作用,基于分层滑模变结构方法为R-AMD设计了非线性鲁棒控制器,以增强R-AMD控制系统对未建模动态及外部干扰的抑制能力。相关实物实验结果验证了所提控制方案的有效性。针对多自由度结构振动集中控制存在的控制器设计复杂、信息交换难度大等问题,提出了基于R-AMD的多自由度结构振动分散控制方案。该方案采用分散形式在结构多个位置布置R-AMD,将整个R-AMD/多自由度结构耦合系统拆解为多个分散子系统后进行控制器独立设计;并分别采用鲁棒抑制和神经网络辨识的方法来处理分散子系统的不确定关联项,给出了基于滑模控制算法的鲁棒分散控制方案和基于动态神经网络的自适应分散控制方案。实物实验结果表明,在抑制结构高阶振动方面分散控制方案较集中控制方案具有更好的性能。针对高层结构的双向风激振动控制问题,设计了单转子形式R-AMD系统并配置于高层结构顶层,为其设计了基于降阶模型的解耦滑模控制方案。为验证该方案的有效性,采用“76层风振控制基准结构”作为被控对象进行振动控制仿真实验,为降低滑模控制器的阶次,将基准结构在X、Y两个方向上均转化为等效单自由度模型。仿真实验表明,R-AMD控制系统可有效降低高层结构在X、Y两个方向上的位移响应和加速度响应,实现结构双向风激振动的同时抑制。本文针对现有直线AMD存在的构造复杂、响应慢、接触式传力及行程受限等问题,提出了基于旋转激励作动器的新型R-AMD系统,并对R-AMD在单自由度、多自由度、高层(风振)等不同结构振动控制中的应用进行了研究,给出了 R-AMD/结构耦合系统建模、参数辨识与控制系统设计方法,并通过数值仿真和实物实验验证了 R-AMD控制系统的有效性。新型R-AMD装置具有易集成、占用空间小、能耗低等优点,适用于大规模结构分散控制及对使用空间限制较高的场合;本文所提R-AMD装置及其非线性控制、分散控制方案对于土木工程结构振动主动控制问题具有一定的理论与应用价值。
王乐三[9](2018)在《电动被动式力矩伺服系统驱动与控制研究》文中指出电动被动式力矩伺服系统用于在半实物仿真条件下为传动设备模拟负载力矩,是保证设备生产、制造及研发的重要环节。随着各类传动设备机动性与精确性的不断提高,相应的对电动被动式力矩伺服系统提出了更高的要求。但是系统的数学模型为谐振环节,且负载力矩给定与承载系统主动运动导致的强外部干扰形式复杂,使系统的动态响应性能、加载精度、稳定性与加载带宽始终难以得到有效保证。针对此问题,本文从加载电机驱动器、电流控制策略、速度控制策略以及负载力矩控制策略入手,对电动被动式力矩伺服系统展开研究,寻求进一步提高动态响应性能、加载精度、稳定性与加载带宽的方法,为更高加载性能的实现提供相应的理论与技术参考。电动被动式力矩伺服系统加载的本质为能量的传递,因此加载电机驱动器的能量传递速度对系统的动态响应有直接影响。本文首先将加载电机驱动器的能量传递过程与电流环数学模型相结合,分析了驱动器的能量传递速度对系统动态响应性能的影响。在此基础上,对矩阵变换器与背靠背双PWM变流器进行了分析与对比,说明了矩阵变换器对于改善系统动态响应的优势。针对矩阵变换器的应用,对输入滤波器进行了设计,进一步保证了系统的动态响应,同时保证了系统功率变换与电压传输的效率。最后,通过系统电流与速度的响应波形,验证了应用矩阵变换器的有效性。矩阵变换器的应用有效提高了系统的能量传递速度,但是同时增加了高精度电流控制的实现难度。因此,本文进一步对矩阵变换器的调制策略、换流策略与永磁同步电机电流控制策略展开研究。对间接空间矢量调制的矢量序列进行了优化,并改进了电压型换流策略,有效抑制了窄脉冲与换流延时的影响,保证了系统在加载电机低速运行状态下的加载性能。同时,将扩张状态观测器引入永磁同步电机的电流控制策略,与“PI控制+电流交叉解耦”相结合,对d-q轴外部干扰与电机参数变化进行了实时补偿,进一步保证了系统在动态加载条件下的电流控制精度。最后,通过仿真与实验,验证了矩阵变换器调制策略、换流策略与永磁同步电机电流控制策略的有效性。速度控制策略同样对系统的动态响应、稳定性与加载带宽有直接影响。电动被动式力矩伺服系统的输出为负载力矩,外部扰动为承载系统的主动运动,数学模型为谐振环节,均与传统电力传动系统存在明显差异。针对此问题,本文将比例环节、负载力矩补偿环节与速度给定前馈环节相结合,提出了适用于电动被动式力矩伺服系统的二自由度状态空间速度控制策略,有效提高了系统的跟踪性能与多余力矩抑制性能,同时保证了系统的稳定性与鲁棒性。在此基础上,引入扩张状态观测器,对光电编码器速度检测误差与摩擦力矩的影响进行抑制,进一步保证了系统的加载精度。最后,通过实验,验证了二自由度状态空间速度控制策略的有效性。基于上述研究,根据频谱加载方式,对基于比例谐振控制的负载力矩控制策略展开研究。首先建立系统的离散数学模型,为负载力矩控制策略的设计与分析提供了有效的理论依据。以此为基础,将相角补偿环节引入比例谐振控制器,根据系统的奈奎斯特图与零、极点分布,分别对正弦梯度加载与非正弦加载条件下的负载力矩控制策略进行了设计与分析。最后,实验结果表明,基于比例谐振控制的负载力矩控制策略,在加载梯度仅为0.3N·m/°的情况下,将系统的加载带宽提高至20Hz,有效提高了系统的动态响应性能、加载精度、稳定性与加载带宽。
马建,孙守增,芮海田,王磊,马勇,张伟伟,张维,刘辉,陈红燕,刘佼,董强柱[10](2018)在《中国筑路机械学术研究综述·2018》文中提出为了促进中国筑路机械学科的发展,从土石方机械、压实机械、路面机械、桥梁机械、隧道机械及养护机械6个方面,系统梳理了国内外筑路机械领域的学术研究进展、热点前沿、存在问题、具体对策及发展前景。土石方机械方面综述了推土机、挖掘机、装载机、平地机技术等;压实机械方面综述了静压、轮胎、圆周振动、垂直振动、振荡压路机、冲击压路机、智能压实技术及设备等;路面机械方面综述了沥青混凝土搅拌设备、沥青混凝土摊铺机、水泥混凝土搅拌设备、水泥混凝土摊铺设备、稳定土拌和设备等;桥梁机械方面综述了架桥机、移动模架造桥机等;隧道机械方面综述了喷锚机械、盾构机等;养护机械方面综述了清扫设备、除冰融雪设备、检测设备、铣刨机、再生设备、封层车、水泥路面修补设备、喷锚机械等。该综述可为筑路机械学科的学术研究提供新的视角和基础资料。
二、模糊与神经网络技术在电力传动系统中的运用(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、模糊与神经网络技术在电力传动系统中的运用(论文提纲范文)
(1)铁路机车设备画像理论及关键技术研究(论文提纲范文)
致谢 |
摘要 |
ABSTRACT |
前言 |
1 绪论 |
1.1 研究背景及意义 |
1.2 必要性及可行性分析 |
1.2.1 必要性 |
1.2.2 可行性 |
1.3 本文拟解决的主要问题 |
1.4 本文研究的主要内容 |
1.5 本文组织架构及技术路线 |
1.6 本章小结 |
2 国内外研究现状及发展趋势 |
2.1 机务大数据研究及应用 |
2.1.1 国外 |
2.1.2 国内 |
2.2 机车检修现状 |
2.3 设备画像 |
2.3.1 画像的概念 |
2.3.2 构成要素 |
2.3.3 模型与方法 |
2.4 标签技术 |
2.4.1 画像标签的定义 |
2.4.2 标签分类 |
2.4.3 标签构建原则 |
2.4.4 标签构建方法 |
2.5 设备健康管理 |
2.5.1 国外设备健康管理现状 |
2.5.2 国内设备健康管理现状 |
2.5.3 我国铁路机务专业PHM技术发展差距 |
2.6 本章小结 |
3 铁路机车设备画像理论 |
3.1 机车设备画像概述 |
3.2 铁路机车设备画像理论构建 |
3.2.1 铁路机车设备画像理论的定义与内涵 |
3.2.2 铁路机车设备画像理论的构成 |
3.2.3 铁路机车设备画像理论的应用架构 |
3.3 本章小结 |
4 基于设备画像的铁路机车标签体系构建 |
4.1 问题概述 |
4.2 面向设备画像的标签技术 |
4.3 机车画像标签体系构建 |
4.3.1 机车画像标签体系技术架构 |
4.3.2 机车画像标签体系 |
4.4 基于聚类的机车第三级标签获取方法 |
4.4.1 K-means算法 |
4.4.2 K-means算法的改进 |
4.4.3 K-means算法与改进算法的比较验证 |
4.5 机车画像标签体系构建实例 |
4.5.1 K-means改进算法的应用 |
4.5.2 机车完整标签体系的产生 |
4.6 本章小结 |
5 基于MsEclat算法的铁路机车事故故障多最小支持度关联规则挖掘 |
5.1 问题概述 |
5.2 MsEclat算法的背景知识 |
5.2.1 垂直格式数据集 |
5.2.2 支持度、置信度与提升度 |
5.2.3 概念格理论 |
5.2.4 多最小支持度下的频繁项集判定 |
5.2.5 面向有序项目集合的最小支持度索引表 |
5.2.6 基于等价类的可连接性判定 |
5.3 MsEclat算法原理 |
5.3.1 Eclat算法简述 |
5.3.2 改进的Eclat算法—MsEclat算法 |
5.4 优化的Ms Eclat算法 |
5.4.1 基于布尔矩阵的T_(set)位运算求交 |
5.4.2 基于MapReduce的等价类并行运算 |
5.4.3 大数据场景下优化的MsEclat算法的频繁项集挖掘步骤 |
5.5 算法比较验证 |
5.5.1 MsEclat算法与水平挖掘算法的对比 |
5.5.2 MsEclat算法与其优化算法的对比 |
5.6 机车事故故障关联规则挖掘分析 |
5.6.1 待分析项目的选取 |
5.6.2 关联规则挖掘结果分析 |
5.7 本章小结 |
6 基于PSO+DE混合优化BP神经网络的铁路机车质量安全态势预测 |
6.1 问题概述 |
6.2 机车质量等级评价 |
6.3 基于机车质量评价项点的特征选择 |
6.3.1 灰色关联度分析 |
6.3.2 机车质量等级的比较特征选择 |
6.4 PSO+DE混合优化BP神经网络 |
6.4.1 BP神经网络原理 |
6.4.2 PSO算法原理 |
6.4.3 DE算法原理 |
6.4.4 基于时变概率的PSO+DE混合优化BP神经网络预测模型 |
6.5 机车质量安全态势预测分析 |
6.5.1 预测模型训练 |
6.5.2 预测模型训练结果分析 |
6.5.3 预测模型应用分析 |
6.6 本章小结 |
7 基于铁路机车设备画像理论的铁路机车健康管理应用总体设计 |
7.1 机务大数据与机车健康管理 |
7.2 铁路机车健康管理应用设计 |
7.2.1 设计目标及定位 |
7.2.2 总体架构设计 |
7.2.3 技术架构设计 |
7.3 铁路机车健康管理应用的典型应用场景分析 |
7.3.1 设备质量综合分析 |
7.3.2 人员运用综合把控 |
7.3.3 运输生产综合管理 |
7.4 本章小结 |
8 某铁路局机车健康管理应用实践 |
8.1 应用开发方案 |
8.1.1 系统开发环境 |
8.1.2 数据调用方式 |
8.1.3 分析模型定时任务调用方式 |
8.2 机车数据管理功能 |
8.2.1 基本数据管理 |
8.2.2 视频数据管理 |
8.2.3 机务电子地图 |
8.3 机车画像标签生成及分析功能 |
8.3.1 机车画像标签管理 |
8.3.2 单台机车画像分析 |
8.3.3 机车设备画像分析 |
8.4 机车事故故障关联分析功能 |
8.5 机车质量评价分析功能 |
8.5.1 单台机车质量安全分析 |
8.5.2 机务段级机车质量安全分析 |
8.5.3 机务部级机车质量安全分析 |
8.5.4 全局机务专业质量安全综合分析 |
8.6 机车质量安全态势预测分析功能 |
8.7 本章小结 |
9 总结与展望 |
9.1 本文总结 |
9.2 研究展望 |
参考文献 |
图索引 |
FIGURE INDEX |
表索引 |
学位论文数据集 |
TABLE INDEX |
作者简历及攻读博士学位期间取得的科研成果 |
(2)电传动内燃机车励磁控制系统的研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 论文研究背景与意义 |
1.2 内燃机车电力传动方式发展 |
1.2.1 直-直流电力传动 |
1.2.2 交-直流电力传动 |
1.2.3 交-交流电力传动 |
1.3 内燃机车励磁控制系统发展 |
1.4 本文主要研究内容 |
2 内燃机车牵引性能分析及电力传动结构数学建模 |
2.1 内燃机车牵引特性分析 |
2.2 内燃机车电力传动结构 |
2.2.1 柴油机 |
2.2.2 主发电机 |
2.2.3 整流器 |
2.2.4 牵引电动机 |
2.2.5 启动发电机 |
2.3 内燃机车电机数学建模 |
2.4 本章小结 |
3 内燃机车调速系统设计 |
3.1 调速系统原理和数学模型 |
3.1.1 调速系统原理 |
3.1.2 调速系统数学模型 |
3.2 调速控制器算法 |
3.3 调速控制器的算法改进 |
3.3.1 模型预测控制算法 |
3.3.2 BP神经网络算法 |
3.3.3 BP神经网络预测控制算法 |
3.4 调速控制系统仿真 |
3.5 本章小结 |
4 内燃机车恒功率励磁控制系统设计 |
4.1 恒功率励磁原理 |
4.1.1 牵引发电机的理想外特性 |
4.1.2 牵引发电机的自然外特性 |
4.2 恒功率励磁控制系统的设计 |
4.2.1 励磁控制系统作用 |
4.2.2 励磁控制系统工作原理 |
4.2.3 恒功率励磁控制策略及数学建模 |
4.3 恒功率励磁调节器的算法改进 |
4.3.1 模糊控制 |
4.3.2 模糊自适应PID励磁调节器设计 |
4.4 恒功率励磁控制系统仿真 |
4.5 本章小结 |
5 内燃机车辅发励磁充电电路设计 |
5.1 充电电路控制及原理 |
5.1.1 PWM产生原理 |
5.1.2 充电电路原理 |
5.2 充电电路设计及改进 |
5.2.1 电路结构改进 |
5.2.2 改进电路结构理论推导 |
5.3 带Buck缓冲的辅助发电机励磁充电电路系统建模 |
5.3.1 控制信号产生算法 |
5.3.2 软件控制流程 |
5.4 仿真实验 |
5.4.1 带Buck缓冲的辅助发电机励磁充电电路模型 |
5.4.2 仿真实验 |
5.5 本章小结 |
结论 |
致谢 |
参考文献 |
攻读学位期间的研究成果 |
(3)塑料挤出机温度控制系统研究与设计(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 课题研究背景及意义 |
1.2 国内外挤出机控制系统研究现状 |
1.2.1 国外挤出机控制系统的发展现状 |
1.2.2 国内挤出机控制系统的发展现状 |
1.2.3 国内外塑料挤出机温度控制方法发展现状 |
1.3 课题来源及研究目标 |
1.4 课题主要研究内容和论文结构 |
第二章 塑料挤出机温度控制系统分析及方案设计 |
2.1 塑料挤出机分类及设备组成 |
2.1.1 塑料挤出机的分类 |
2.1.2 塑料挤出机设备的组成 |
2.2 塑料挤出机生产工艺及工作原理 |
2.2.1 塑料挤出机生产工艺 |
2.2.2 塑料挤出机工作原理 |
2.3 塑料挤出机温度控制系统特点及工艺要求 |
2.3.1 挤出机料筒温度控制特点 |
2.3.2 挤出机料筒温度工艺要求 |
2.4 塑料挤出机温度控制系统整体方案设计 |
本章小结 |
第三章 塑料挤出机料筒温度控制算法研究 |
3.1 塑料挤出机温度控制系统数学模型建立 |
3.2 基于模糊PID的挤出机料筒温度控制算法研究 |
3.2.1 PID控制原理 |
3.2.2 模糊控制理论基础 |
3.2.3 模糊逻辑系统 |
3.2.4 料筒温度模糊PID控制器设计 |
3.2.5 料筒温度基本控制方法仿真与分析 |
3.3 基于BP神经网络PID的挤出机料筒温度控制算法研究 |
3.3.1 BP神经网络的基本原理 |
3.3.2 BP神经网络的基本结构 |
3.3.3 BP神经网络误差反向传播理论分析 |
3.3.4 BP神经网络的学习过程及推导过程 |
3.3.5 BP神经网络的PID控制器设计 |
3.3.6 BP神经网络PID料筒温度控制系统仿真与分析 |
3.3.7 料筒温度不同控制方法下的仿真对比分析 |
本章小结 |
第四章 塑料挤出机温度控制系统的设计与实现 |
4.1 塑料挤出机温度控制系统硬件设计 |
4.1.1 PLC及扩展模块配置 |
4.1.2 S7-300PLC硬件组态 |
4.1.3 温度传感器及执行器的选取 |
4.2 塑料挤出机温度控制系统软件设计 |
4.2.1 STEP7系统开发环境 |
4.2.2 PLC主程序设计 |
4.2.3 BP-PID控制方法程序设计 |
4.2.4 BP-PID控制子程序的实现 |
4.3 上位机WinCC监控系统开发与设计 |
4.3.1 WinCC组态软件 |
4.3.2 WinCC监控系统组态流程 |
4.3.3 WinCC监控系统功能要求 |
4.3.4 塑料挤出机温度监控界面开发 |
本章小结 |
第五章 挤出机温度控制系统调试与运行结果分析 |
5.1 控制系统通信的实现 |
5.2 挤出机温度控制系统调试 |
5.3 系统测试与运行结果分析 |
本章小结 |
第六章 总结与展望 |
6.1 全文总结 |
6.2 研究展望 |
参考文献 |
攻读硕士学位期间发表的学术论文 |
致谢 |
(4)电气传动系统的智能控制问题(论文提纲范文)
1 智能控制系统的兴起和特点 |
1.1 智能控制系统的兴起 |
1.2 智能控制系统的特点 |
2 智能控制系统的主要控制方式 |
2.1 模糊控制 |
2.2 单神经元控制 |
3 智能控制系统的构成 |
4 智能控制器在电气传动系统的应用 |
4.1模糊控制在电气传动系统的应用 |
4.2单神经元控制器在电气传动系统的应用 |
5智能控制系统与电力传动系统的未来发展 |
6 结论 |
(5)电力传动系统模糊与神经网络技术的运用(论文提纲范文)
0 引言 |
1 电力传动系统 |
2 模糊与人工神经网络技术 |
2.1 模糊理论 |
2.2 神经网络技术理论 |
3 应用分析 |
3.1 控制系统 |
3.2 稳定器控制 |
3.3 滑模度控制器 |
3.4 其他 |
4 结束语 |
(6)基于模糊神经网络和D-S证据理论的三电平四象限变频器主电路健康诊断策略(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
1.1 研究背景及意义 |
1.2 变频器故障诊断研究现状 |
1.3 本文主要解决的问题 |
1.4 本文的主要研究内容 |
2 三电平四象限变频器主电路组成原理及故障特征分析 |
2.1 三电平四象限变频器主电路基本结构原理 |
2.1.1 NPC三电平整流电路工作原理 |
2.1.2 中间直流电路工作原理 |
2.1.3 NPC三电平逆变电路工作原理 |
2.1.4 三电平主电路PWM调制原理 |
2.1.5 变频器的四象限运行 |
2.2 三电平四象限变频器主电路故障分析 |
2.2.1 整流电路功率管开路故障分析 |
2.2.2 整流电路故障特征提取 |
2.2.3 逆变电路功率管开路故障分析 |
2.2.4 逆变电路故障特征提取 |
2.2.5 直流电路故障分析 |
2.2.6 直流电路故障特征提取 |
2.3 本章小结 |
3 基于模糊神经网络的变频器主电路健康诊断算法研究 |
3.1 模糊神经网络在变频器健康诊断中应用可行性分析 |
3.2 基于模糊神经网络的变频器主电路健康诊断模型构建 |
3.3 基于T-S模型的模糊神经网络 |
3.3.1 T-S模糊神经网络构建 |
3.3.2 T-S模糊神经网络的学习算法 |
3.4 逆变电路的健康诊断 |
3.4.1 T-S数据的预处理 |
3.4.2 输入量的模糊化 |
3.4.3 隶属函数的构造 |
3.4.4 模糊推理以及模糊规则的确定 |
3.4.5 仿真实验 |
3.5 整流电路和直流电路的健康诊断 |
3.5.1 整流电路的健康诊断 |
3.5.2 直流电路健康诊断 |
3.6 模糊神经网络与BP神经网络诊断结果对比 |
3.7 本章小结 |
4 基于D-S证据理论变频器主电路健康诊断算法研究 |
4.1 D-S证据理论的变频器主电路健康诊断框架 |
4.2 D-S证据理论简介 |
4.3 D-S证据理论的融合规则及其改进 |
4.3.1 冲突证据的融合 |
4.3.2 一般的D-S改进方法 |
4.3.3 基于相似系数的改进方法 |
4.4 本章小结 |
5 基于模糊神经网络和D-S证据理论的变频器健康诊断策略 |
5.1 基于模糊神经网络和D-S证据理论的综合诊断框架 |
5.2 基本概率分配函数 |
5.3 证据理论诊断决策规则 |
5.4 实验仿真 |
5.5 本章小结 |
6 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(7)基于状态空间模型的开关磁阻电机预测电流控制(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 课题研究背景及意义 |
1.2 SRD电流控制器研究现状 |
1.2.1 滞环电流控制器 |
1.2.2 PI电流控制器 |
1.2.3 智能电流控制器 |
1.2.4 几种电流控制器优缺点比较 |
1.3 模型预测控制及其在电力电子与电力传动领域的应用 |
1.3.1 模型预测控制 |
1.3.2 电力电子与电力传动领域的模型预测控制技术 |
1.4 本文主要研究内容 |
第2章 开关磁阻电机结构与数学模型 |
2.1 SRM基本结构与运行原理 |
2.2 SRM基本机电方程式 |
2.2.1 电压平衡方程式 |
2.2.2 机械平衡方程式 |
2.2.3 机电联系方程式 |
2.3 SRM数学模型 |
2.3.1 线性模型 |
2.3.2 准线性模型 |
2.3.3 非线性模型 |
2.4 SRM控制方式 |
2.4.1 CCC控制方式 |
2.4.2 电压PWM控制方式 |
2.4.3 APC控制方式 |
2.5 本章小结 |
第3章 基于有限控制集的开关磁阻电机预测电流控制 |
3.1 模型预测控制基本原理 |
3.2 不对称半桥功率变换器 |
3.3 基于有限控制集的模型预测电流控制FCS-MPCC |
3.3.1 不对称半桥有限状态集 |
3.3.2 预测模型 |
3.3.3 基于有限状态集的模型预测电流控制器FCS-MPCC |
3.3.4 改进的FCS-MPCC设计 |
3.3.5 改进的FCS-MPCC仿真结果 |
3.4 本章小结 |
第4章 基于连续控制集的开关磁阻电机预测电流控制 |
4.1 基于连续控制集的模型预测电流控制器CCS-MPCC |
4.2 基于连续控制集的SRM模型预测电流控制器性能分析 |
4.2.1 模型精确性分析 |
4.2.2 稳定性分析 |
4.2.3 抗扰动性能分析 |
4.3 非线性电感模型 |
4.3.1 一种简化的非线性电感模型 |
4.3.2 增量电感数据的获取 |
4.3.3 增量电感到相电感的转化 |
4.4 基于连续控制集的SRM模型预测电流控制仿真 |
4.4.1 恒转矩给定下稳态性能仿真分析 |
4.4.2 给定转矩突变时动态性能仿真分析 |
4.4.3 模型精确性影响仿真分析 |
4.4.4 参数鲁棒性仿真分析 |
4.4.5 抗扰动性能仿真分析 |
4.5 本章小结 |
第5章 基于DSP的开关磁阻电机预测电流控制系统 |
5.1 控制系统介绍 |
5.2 控制系统硬件组成 |
5.2.1 DSP微处理器 |
5.2.2 电信号采样电路 |
5.2.3 转子位置检测电路 |
5.2.4 功率变换器及其驱动电路 |
5.3 控制系统软件组成 |
5.3.1 主程序 |
5.3.2 基于连续控制模型预测电流控制的PWM中断程序 |
5.3.3 PWM保护中断 |
5.4 实验验证与分析 |
5.4.1 恒转矩给定下稳态性能实验分析 |
5.4.2 参数鲁棒性实验分析 |
5.4.3 抗扰动性能实验分析 |
5.5 本章小结 |
结论 |
参考文献 |
附录A 攻读学位期间所发表的学术论文目录 |
附录B 攻读学位期间所获得的软件着作权 |
致谢 |
(8)基于旋转激励作动器的结构振动主动控制(论文提纲范文)
摘要 |
ABSTRACT |
主要符号表 |
1 绪论 |
1.1 研究背景与意义 |
1.2 国内外相关工作研究进展 |
1.2.1 结构振动AMD控制研究进展 |
1.2.2 结构振动AMD控制应用概况 |
1.2.3 欠驱动TORA机械系统 |
1.2.4 76层风激振动控制基准结构 |
1.3 学位论文的主要研究内容 |
2 R-AMD/单自由度结构耦合系统建模 |
2.1 直线主动质量阻尼器 |
2.2 基于旋转激励作动器的主动质量阻尼器 |
2.3 R-AMD/单自由度结构耦合系统数学模型 |
2.4 R-AMD的两种控制模式 |
2.4.1 旋转控制模式 |
2.4.2 摆动控制模式 |
2.5 R-AMD/单自由度结构耦合系统反馈线性化分析 |
2.5.1 最大反馈线性化 |
2.5.2 极点配置反馈控制 |
2.5.3 闭环系统稳定性分析 |
2.5.4 仿真分析 |
2.6 本章小结 |
3 基于R-AMD的单自由度结构振动非线性控制 |
3.1 基于θ-D逼近的非线性最优控制 |
3.1.1 非线性最优控制 |
3.1.2 θ-D逼近方法 |
3.1.3 微分同胚坐标变换 |
3.1.4 控制系统稳定性分析 |
3.1.5 控制输入求解 |
3.2 基于分层滑模算法的非线性鲁棒控制 |
3.2.1 滑模变结构控制基本原理 |
3.2.2 分层滑模变结构控制器 |
3.2.3 控制系统稳定性分析 |
3.3 实物实验 |
3.3.1 实验平台搭建 |
3.3.2 参数辨识 |
3.3.3 非线性最优控制实验分析 |
3.3.4 非线性鲁棒控制实验分析 |
3.4 本章小结 |
4 基于R-AMD的多自由度结构振动分散控制 |
4.1 非线性关联系统控制问题 |
4.1.1 集中控制 |
4.1.2 分散控制 |
4.2 基于LQR算法的多自由度结构振动集中控制 |
4.2.1 问题描述 |
4.2.2 集中式R-AMD/多自由度结构系统建模 |
4.2.3 LQR集中控制器设计 |
4.3 基于滑模变结构算法的多自由度结构振动鲁棒分散控制 |
4.3.1 问题描述 |
4.3.2 分散式R-AMD/多自由度结构耦合系统建模 |
4.3.3 滑模变结构鲁棒分散控制器设计 |
4.4 基于动态神经网络的多自由度结构振动自适应分散控制 |
4.4.1 神经网络系统辨识 |
4.4.2 动态神经网络 |
4.4.3 动态神经网络自适应分散控制器设计 |
4.5 实物实验 |
4.5.1 实验平台搭建 |
4.5.2 参数辨识 |
4.5.3 自由振动实验 |
4.5.4 正弦激励实验 |
4.5.5 地震载荷激励实验 |
4.6 本章小结 |
5 基于R-AMD的高层结构双向风激振动控制 |
5.1 系统建模与模型降阶 |
5.1.1 基准结构数学模型 |
5.1.2 R-AMD/76层基准结构耦合系统建模 |
5.1.3 模型降阶 |
5.2 基于解耦滑模算法的R-AMD控制系统设计 |
5.3 仿真实验 |
5.3.1 工况1:X、Y方向同步风载荷激励 |
5.3.2 工况2:X、Y方向异步风载荷激励 |
5.3.3 与Yang提出的sample AMD比较 |
5.4 本章小结 |
6 结论与展望 |
6.1 结论 |
6.2 创新点 |
6.3 展望 |
参考文献 |
攻读博士学位期间科研项目及科研成果 |
致谢 |
作者简介 |
(9)电动被动式力矩伺服系统驱动与控制研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 课题背景及研究的目的和意义 |
1.1.1 被动式力矩伺服系统的发展需求 |
1.1.2 电动被动式力矩伺服系统的关键问题 |
1.2 电动被动式力矩伺服系统加载电机驱动器研究现状 |
1.3 电动被动式力矩伺服系统控制策略研究现状 |
1.3.1 电流控制策略 |
1.3.2 速度控制策略 |
1.3.3 负载力矩控制策略 |
1.4 本文主要研究内容 |
第2章 基于矩阵变换器的系统能量传递速度提高方法 |
2.1 引言 |
2.2 系统电流环数学模型的建立与分析 |
2.2.1 永磁同步电机数学模型 |
2.2.2 考虑加载电机驱动器能量传递过程的电流环数学模型 |
2.3 加载电机驱动器能量传递速度分析 |
2.3.1 矩阵变换器能量传递速度分析 |
2.3.2 背靠背双PWM变流器能量传递速度分析 |
2.3.3 能量传递速度对比分析 |
2.4 矩阵变换器输入滤波器的设计与分析 |
2.5 矩阵变换器能量传递速度验证 |
2.6 本章小结 |
第3章 矩阵变换器-永磁同步电机加载系统高精度电流控制策略 |
3.1 引言 |
3.2 基于矢量序列优化的窄脉冲抑制方法 |
3.2.1 间接空间矢量调制策略 |
3.2.2 矢量序列优化方法 |
3.3 基于电压型换流策略的换流延时缩短方法 |
3.3.1 正常区间换流策略 |
3.3.2 过渡区间换流策略 |
3.4 基于扩张状态观测器的永磁同步电机电流控制策略 |
3.4.1 永磁同步电机电流扰动与不确定性分析 |
3.4.2 基于扩张状态观测器的干扰抑制与不确定性补偿 |
3.5 电流控制精度验证 |
3.5.1 矩阵变换器调制策略与换流策略验证 |
3.5.2 永磁同步电机电流控制策略验证 |
3.6 本章小结 |
第4章 二自由度状态空间速度控制策略 |
4.1 引言 |
4.2 电动被动式力矩伺服系统数学模型的建立与分析 |
4.3 二自由度状态空间速度控制策略的设计与分析 |
4.3.1 速度控制策略设计 |
4.3.2 跟踪性能与多余力矩抑制性能分析 |
4.3.3 稳定性分析 |
4.3.4 鲁棒性分析 |
4.4 与常用速度控制策略的对比分析 |
4.4.1 与传统PI控制的对比分析 |
4.4.2 与状态空间PI控制的对比分析 |
4.4.3 与陷波滤波器控制的对比分析 |
4.5 基于扩张状态观测器的摩擦力矩补偿及速度信号检测 |
4.6 速度控制策略验证 |
4.6.1 跟踪性能与多余力矩抑制性能验证 |
4.6.2 鲁棒性验证 |
4.6.3 ESO性能验证 |
4.6.4 与常用速度控制策略的对比验证 |
4.7 本章小结 |
第5章 基于比例谐振控制的负载力矩控制策略 |
5.1 引言 |
5.2 基于PR控制的系统离散数学模型 |
5.3 正弦梯度加载条件下的负载力矩控制策略设计与分析 |
5.3.1 比例系数的设计与分析 |
5.3.2 基于奈奎斯特图分析的系统稳定性与加载带宽提高方法 |
5.3.3 基于零、极点分布分析的系统动态响应改善方法 |
5.4 非正弦加载条件下的负载力矩控制策略设计与分析 |
5.5 负载力矩控制策略验证 |
5.5.1 正弦梯度加载验证 |
5.5.2 非正弦加载验证 |
5.5.3 与典型负载力矩控制策略的对比分析 |
5.6 本章小结 |
结论 |
参考文献 |
攻读博士学位期间发表的学术论文及其它成果 |
致谢 |
个人简历 |
(10)中国筑路机械学术研究综述·2018(论文提纲范文)
索引 |
0引言 (长安大学焦生杰教授提供初稿) |
1 土石方机械 |
1.1 推土机 (长安大学焦生杰教授、肖茹硕士生, 吉林大学赵克利教授提供初稿;长安大学焦生杰教授统稿) |
1.1.1 国内外研究现状 |
1.1.1. 1 国外研究现状 |
1.1.1. 2 中国研究现状 |
1.1.2 研究的热点问题 |
1.1.3 存在的问题 |
1.1.4 研究发展趋势 |
1.2 挖掘机 (山河智能张大庆高级工程师团队、华侨大学林添良副教授提供初稿;山河智能张大庆高级工程师统稿) |
1.2.1 挖掘机节能技术 (山河智能张大庆高级工程师、刘昌盛博士、郝鹏博士, 华侨大学林添良副教授, 中南大学胡鹏博士生、林贵堃硕士生提供初稿) |
1.2.1. 1 传统挖掘机动力总成节能技术 |
1.2.1. 2 新能源技术 |
1.2.1. 3 混合动力技术 |
1.2.2 挖掘机智能化与信息化 (山河智能张大庆高级工程师, 中南大学胡鹏、周烜亦博士生、李志勇、范诗萌硕士生提供初稿) |
1.2.2. 1 挖掘机辅助作业技术 |
1.2.2. 2 挖掘机故障诊断技术 |
1.2.2. 3 挖掘机智能施工技术 |
1.2.2. 4 挖掘机远程监控技术 |
1.2.2. 5 问题与展望 |
1.2.3 挖掘机轻量化与可靠性 (山河智能张大庆高级工程师、王德军副总工艺师, 中南大学刘强博士生、万宇阳硕士生提供初稿) |
1.2.3. 1 挖掘机轻量化研究 |
1.2.3. 2 挖掘机疲劳可靠性研究 |
1.2.3. 3 存在的问题与展望 |
1.2.4 挖掘机振动与噪声 (山河智能张大庆高级工程师, 中南大学刘强博士生、万宇阳硕士生提供初稿) |
1.2.4. 1 挖掘机振动噪声分类与产生机理 |
1.2.4. 2 挖掘机振动噪声信号识别现状和发展趋势 |
1.2.4. 3 挖掘机减振降噪技术现状和发展趋势 |
1.2.4. 4 挖掘机振动噪声存在问题与展望 |
1.3 装载机 (吉林大学秦四成教授, 博士生遇超、许堂虹提供初稿) |
1.3.1 装载机冷却系统散热技术研究 |
1.3.1. 1 国内外研究现状 |
1.3.1. 2 研究发展趋势 |
1.3.2 鱼和熊掌兼得的HVT |
1.3.2. 1 技术原理及结构特点 |
1.3.2. 2 技术优点 |
1.3.2. 3 国外研究现状 |
1.3.2. 4 中国研究现状 |
1.3.2. 5 发展趋势 |
1.3.2. 6 展望 |
1.4 平地机 (长安大学焦生杰教授、赵睿英高级工程师提供初稿) |
1.4.1 平地机销售情况与核心技术构架 |
1.4.2 国外平地机研究现状 |
1.4.2. 1 高效的动力传动技术 |
1.4.2. 2 变功率节能技术 |
1.4.2. 3 先进的工作装置电液控制技术 |
1.4.2. 4 操作方式与操作环境的人性化 |
1.4.2. 5 转盘回转驱动装置过载保护技术 |
1.4.2. 6 控制系统与作业过程智能化 |
1.4.2. 7 其他技术 |
1.4.3 中国平地机研究现状 |
1.4.4 存在问题 |
1.4.5 展望 |
2压实机械 |
2.1 静压压路机 (长安大学沈建军高级工程师提供初稿) |
2.1.1 国内外研究现状 |
2.1.2 存在问题及发展趋势 |
2.2 轮胎压路机 (黑龙江工程学院王强副教授提供初稿) |
2.2.1 国内外研究现状 |
2.2.2 热点研究方向 |
2.2.3 存在的问题 |
2.2.4 研究发展趋势 |
2.3 圆周振动技术 (长安大学沈建军高级工程师提供初稿) |
2.3.1 国内外研究现状 |
2.3.1. 1 双钢轮技术研究进展 |
2.3.1. 2 单钢轮技术研究进展 |
2.3.2 热点问题 |
2.3.3 存在问题 |
2.3.4 发展趋势 |
2.4 垂直振动压路机 (合肥永安绿地工程机械有限公司宋皓总工程师提供初稿) |
2.4.1 国内外研究现状 |
2.4.2 存在的问题 |
2.4.3 热点研究方向 |
2.4.4 研究发展趋势 |
2.5 振动压路机 (建设机械技术与管理杂志社万汉驰高级工程师提供初稿) |
2.5.1 国内外研究现状 |
2.5.1. 1 国外振动压路机研究历史与现状 |
2.5.1. 2 中国振动压路机研究历史与现状 |
2.5.1. 3 特种振动压实技术与产品的发展 |
2.5.2 热点研究方向 |
2.5.2. 1 控制技术 |
2.5.2. 2 人机工程与环保技术 |
2.5.2. 3 特殊工作装置 |
2.5.2. 4 振动力调节技术 |
2.5.2. 4. 1 与振动频率相关的调节技术 |
2.5.2. 4. 2 与振幅相关的调节技术 |
2.5.2. 4. 3 与振动力方向相关的调节技术 |
2.5.2. 5 激振机构优化设计 |
2.5.2. 5. 1 无冲击激振器 |
2.5.2. 5. 2 大偏心矩活动偏心块设计 |
2.5.2. 5. 3 偏心块形状优化 |
2.5.3 存在问题 |
2.5.3. 1 关于名义振幅的概念 |
2.5.3. 2 关于振动参数的设计与标注问题 |
2.5.3. 3 振幅均匀性技术 |
2.5.3. 4 起、停振特性优化技术 |
2.5.4 研究发展方向 |
2.6 冲击压路机 (长安大学沈建军高级工程师提供初稿) |
2.6.1 国内外研究现状 |
2.6.2 研究热点 |
2.6.3 主要问题 |
2.6.4 发展趋势 |
2.7 智能压实技术及设备 (西南交通大学徐光辉教授, 长安大学刘洪海教授、贾洁博士生, 国机重工 (洛阳) 建筑机械有限公司韩长太副总经理提供初稿;西南交通大学徐光辉教授统稿) |
2.7.1 国内外研究现状 |
2.7.2 热点研究方向 |
2.7.3 存在的问题 |
2.7.4 研究发展趋势 |
3路面机械 |
3.1 沥青混凝土搅拌设备 (长安大学谢立扬高级工程师、张晨光博士生、赵利军副教授提供初稿) |
3.1.1 国内外能耗研究现状 |
3.1.1. 1 烘干筒 |
3.1.1. 2 搅拌缸 |
3.1.1. 3 沥青混合料生产工艺与管理 |
3.1.2 国内外环保研究现状 |
3.1.2. 1 环保的宏观管理 |
3.1.2. 2 沥青烟 |
3.1.2. 3 排放因子 |
3.1.3 存在的问题 |
3.1.4 未来研究趋势 |
3.2 沥青混凝土摊铺机 (长安大学焦生杰教授、周小浩硕士生提供初稿) |
3.2.1 沥青混凝土摊铺机近几年销售情况 |
3.2.2 国内外研究现状 |
3.2.2. 1 国外沥青混凝土摊铺机发展现状 |
3.2.2. 2 中国沥青混凝土摊铺机的发展现状 |
3.2.2. 3 国内外行驶驱动控制技术 |
3.2.2. 4 国内外智能化技术 |
3.2.2. 5 国内外自动找平技术 |
3.2.2. 6 振捣系统的研究 |
3.2.2. 7 国内外熨平板的研究 |
3.2.2. 8 国内外其他技术的研究 |
3.2.3 存在的问题 |
3.2.4 研究的热点方向 |
3.2.5 发展趋势与展望 |
3.3 水泥混凝土搅拌设备 (长安大学赵利军副教授、冯忠绪教授、赵凯音博士生提供初稿;长安大学赵利军副教授统稿) |
3.3.1 国内外研究现状 |
3.3.1. 1 搅拌机 |
3.3.1. 2 振动搅拌技术 |
3.3.1. 3 搅拌工艺 |
3.3.1. 4 搅拌过程监控技术 |
3.3.2 存在问题 |
3.3.3 总结与展望 |
3.4 水泥混凝土摊铺设备 (长安大学胡永彪教授提供初稿) |
3.4.1 国内外研究现状 |
3.4.1. 1 作业机理 |
3.4.1. 2 设计计算 |
3.4.1. 3 控制系统 |
3.4.1. 4 施工技术 |
3.4.2 热点研究方向 |
3.4.3 存在的问题 |
3.4.4 研究发展趋势[466] |
3.5 稳定土厂拌设备 (长安大学赵利军副教授、李雅洁研究生提供初稿) |
3.5.1 国内外研究现状 |
3.5.1. 1 连续式搅拌机与搅拌工艺 |
3.5.1. 2 振动搅拌技术 |
3.5.2 存在问题 |
3.5.3 总结与展望 |
4桥梁机械 |
4.1 架桥机 (石家庄铁道大学邢海军教授提供初稿) |
4.1.1 公路架桥机的分类及结构组成 |
4.1.2 架桥机主要生产厂家及其典型产品 |
4.1.2. 1 郑州大方桥梁机械有限公司 |
4.1.2. 2 邯郸中铁桥梁机械设备有限公司 |
4.1.2. 3 郑州市华中建机有限公司 |
4.1.2. 4 徐州徐工铁路装备有限公司 |
4.1.3 大吨位公路架桥机 |
4.1.3. 1 LGB1600型导梁式架桥机 |
4.1.3. 2 TLJ1700步履式架桥机 |
4.1.3. 3 架桥机的规范与标准 |
4.1.4 发展趋势 |
4.1.4. 1 自动控制技术的应用 |
4.1.4. 2 智能安全监测系统的应用 |
4.1.4. 3 故障诊断技术的应用 |
4.2 移动模架造桥机 (长安大学吕彭民教授、陈一馨讲师, 山东恒堃机械有限公司秘嘉川工程师、王龙奉工程师提供初稿;长安大学吕彭民教授统稿) |
4.2.1 移动模架造桥机简介 |
4.2.1. 1 移动模架造桥机的分类及特点 |
4.2.1. 2 移动模架主要构造及其功能 |
4.2.1. 3 移动模架系统的施工原理与工艺流程 |
4.2.2 国内外研究现状 |
4.2.2. 1 国外研究状况 |
4.2.2. 2 国内研究状况 |
4.2.3 中国移动模架造桥机系列创新及存在的问题 |
4.2.3. 1 中国移动模架造桥机系列创新 |
4.2.3. 2 中国移动模架存在的问题 |
4.2.4 研究发展的趋势 |
5隧道机械 |
5.1 喷锚机械 (西安建筑科技大学谷立臣教授、孙昱博士生提供初稿) |
5.1.1 国内外研究现状 |
5.1.1. 1 混凝土喷射机 |
5.1.1. 2 锚杆钻机 |
5.1.2 存在的问题 |
5.1.3 热点及研究发展方向 |
5.2 盾构机 (中南大学易念恩实验师, 长安大学叶飞教授, 中南大学王树英副教授、夏毅敏教授提供初稿) |
5.2.1 盾构机类型 |
5.2.1. 1 国内外发展现状 |
5.2.1. 2 存在的问题与研究热点 |
5.2.1. 3 研究发展趋势 |
5.2.2 盾构刀盘 |
5.2.2. 1 国内外研究现状 |
5.2.2. 2 热点研究方向 |
5.2.2. 3 存在的问题 |
5.2.2. 4 研究发展趋势 |
5.2.3 盾构刀具 |
5.2.3. 1 国内外研究现状 |
5.2.3. 2 热点研究方向 |
5.2.3. 3 存在的问题 |
5.2.3. 4 研究发展趋势 |
5.2.4 盾构出渣系统 |
5.2.4. 1 螺旋输送机 |
5.2.4. 2 泥浆输送管路 |
5.2.5 盾构渣土改良系统 |
5.2.5. 1 国内外发展现状 |
5.2.5. 2 存在问题与研究热点 |
5.2.5. 3 研究发展趋势 |
5.2.6 壁后注浆系统 |
5.2.6. 1 国内外发展现状 |
5.2.6. 2 研究热点方向 |
5.2.6. 3 存在的问题 |
5.2.6. 4 研究发展趋势 |
5.2.7 盾构检测系统 |
5.2.7. 1 国内外研究现状 |
5.2.7. 2 热点研究方向 |
5.2.7. 3 存在的问题 |
5.2.7. 4 研究发展趋势 |
5.2.8 盾构推进系统 |
5.2.8. 1 国内外研究现状 |
5.2.8. 2 热点研究方向 |
5.2.8. 3 存在的问题 |
5.2.8. 4 研究发展趋势 |
5.2.9 盾构驱动系统 |
5.2.9. 1 国内外研究现状 |
5.2.9. 2 热点研究方向 |
5.2.9. 3 存在的问题 |
5.2.9. 4 研究发展趋势 |
6养护机械 |
6.1 清扫设备 (长安大学宋永刚教授提供初稿) |
6.1.1 国外研究现状 |
6.1.2 热点研究方向 |
6.1.2. 1 单发动机清扫车 |
6.1.2. 2 纯电动清扫车 |
6.1.2. 3 改善人机界面向智能化过渡 |
6.1.3 存在的问题 |
6.1.3. 1 整车能源效率偏低 |
6.1.3. 2 作业效率低 |
6.1.3. 3 除尘效率低 |
6.1.3. 4 静音水平低 |
6.1.4 研究发展趋势 |
6.1.4. 1 节能环保 |
6.1.4. 2 提高作业性能及效率 |
6.1.4. 3 提高自动化程度及路况适应性 |
6.2 除冰融雪设备 (长安大学高子渝副教授、吉林大学赵克利教授提供初稿;长安大学高子渝副教授统稿) |
6.2.1 国内外除冰融雪设备研究现状 |
6.2.1. 1 融雪剂撒布机 |
6.2.1. 2 热力法除冰融雪机械 |
6.2.1. 3 机械法除冰融雪机械 |
6.2.1. 4 国外除冰融雪设备技术现状 |
6.2.1. 5 中国除冰融雪设备技术现状 |
6.2.2 中国除冰融雪机械存在的问题 |
6.2.3 除冰融雪机械发展趋势 |
6.3 检测设备 (长安大学叶敏教授、张军讲师提供初稿) |
6.3.1 路面表面性能检测设备 |
6.3.1. 1 国外路面损坏检测系统 |
6.3.1. 2 中国路面损坏检测系统 |
6.3.2 路面内部品质的检测设备 |
6.3.2. 1 新建路面质量评价设备 |
6.3.2. 2 砼路面隐性病害检测设备 |
6.3.2. 3 沥青路面隐性缺陷的检测设备 |
6.3.3 研究热点与发展趋势 |
6.4 铣刨机 (长安大学胡永彪教授提供初稿) |
6.4.1 国内外研究现状 |
6.4.1. 1 铣削转子动力学研究 |
6.4.1. 2 铣削转子刀具排列优化及刀具可靠性研究 |
6.4.1. 3 铣刨机整机参数匹配研究 |
6.4.1. 4 铣刨机转子驱动系统研究 |
6.4.1. 5 铣刨机行走驱动系统研究 |
6.4.1. 6 铣刨机控制系统研究 |
6.4.1. 7 铣刨机路面工程应用研究 |
6.4.2 热点研究方向 |
6.4.3 存在的问题 |
6.4.4 研究发展趋势 |
6.4.4. 1 整机技术 |
6.4.4. 2 动力技术 |
6.4.4. 3 传动技术 |
6.4.4. 4 控制与信息技术 |
6.4.4. 5 智能化技术 |
6.4.4. 6 环保技术 |
6.4.4. 7 人机工程技术 |
6.5 再生设备 (长安大学顾海荣、马登成副教授提供初稿;顾海荣副教授统稿) |
6.5.1 厂拌热再生设备 |
6.5.1. 1 国内外研究现状 |
6.5.1. 2 热点研究方向 |
6.5.1. 3 存在的问题 |
6.5.1. 4 研究发展趋势 |
6.5.2 就地热再生设备 |
6.5.2. 1 国内外研究现状 |
6.5.2. 2 热点研究方向 |
6.5.2. 3 存在的问题 |
6.5.2. 4 研究发展趋势 |
6.5.3 冷再生设备 |
6.5.3. 1 国内外研究现状 |
6.5.3. 2 热点研究方向 |
6.6 封层车 (长安大学焦生杰教授、杨光兴硕士生提供初稿) |
6.6.1 前言 |
6.6.2 同步碎石封层技术与设备 |
6.6.2. 1 同步碎石封层技术简介 |
6.6.2. 2 国外研究现状 |
6.6.2. 3 中国研究现状 |
6.6.2. 4 研究方向 |
6.6.2. 5 存在的问题 |
6.6.3 稀浆封层技术与设备 |
6.6.3. 1 稀浆封层技术简介 |
6.6.3. 2 国外研究现状 |
6.6.3. 3 中国发展现状 |
6.6.3. 4 热点研究方向 |
6.6.3. 5 存在的问题 |
6.6.4 雾封层技术与设备 |
6.6.4. 1 雾封层技术简介 |
6.6.4. 2 国外发展现状 |
6.6.4. 3 中国发展现状 |
6.6.4. 4 热点研究方向 |
6.6.4. 5 存在的问题 |
6.6.5 研究发展趋势 |
6.7 水泥路面修补设备 (长安大学叶敏教授、窦建明博士生提供初稿) |
6.7.1 技术简介 |
6.7.1. 1 施工技术 |
6.7.1. 2 施工机械 |
6.7.1. 3 共振破碎机工作原理 |
6.7.2 共振破碎机研究现状 |
6.7.2. 1 国外研究发展现状 |
6.7.2. 2 中国研究发展现状 |
6.7.3 研究热点及发展趋势 |
6.7.3. 1 研究热点 |
6.7.3. 2 发展趋势 |
7 结语 (长安大学焦生杰教授提供初稿) |
四、模糊与神经网络技术在电力传动系统中的运用(论文参考文献)
- [1]铁路机车设备画像理论及关键技术研究[D]. 李鑫. 中国铁道科学研究院, 2021(01)
- [2]电传动内燃机车励磁控制系统的研究[D]. 任相. 兰州交通大学, 2021
- [3]塑料挤出机温度控制系统研究与设计[D]. 黄红兵. 大连交通大学, 2020(06)
- [4]电气传动系统的智能控制问题[J]. 赵洪河. 电子技术与软件工程, 2019(21)
- [5]电力传动系统模糊与神经网络技术的运用[J]. 刘娜,董志冉. 设备管理与维修, 2019(19)
- [6]基于模糊神经网络和D-S证据理论的三电平四象限变频器主电路健康诊断策略[D]. 曹斌. 河南理工大学, 2019(07)
- [7]基于状态空间模型的开关磁阻电机预测电流控制[D]. 史林然. 湖南大学, 2019(06)
- [8]基于旋转激励作动器的结构振动主动控制[D]. 张宇. 大连理工大学, 2019(01)
- [9]电动被动式力矩伺服系统驱动与控制研究[D]. 王乐三. 哈尔滨工业大学, 2018(01)
- [10]中国筑路机械学术研究综述·2018[J]. 马建,孙守增,芮海田,王磊,马勇,张伟伟,张维,刘辉,陈红燕,刘佼,董强柱. 中国公路学报, 2018(06)